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LI N O

SUMMARY

o

This report describes the formulation and implementation of a nonreflecting boundary

for use with existing finite-element codes to perform nonlinear ground-shock analyses of
buried structures. The boundary is based on a first-order doubly asymptotic approzimation }
(DAA, ) for disturbances propagating outward from a selected portion of the soil medium
surrounding the structure of interest. The resulting set of first-order ordinary differential
equations is then combined with the second-order equations of motion for the finite-element
model so as to facilitate solution by a staggered solution procedure. This procedure is shown
to be computationally stable as long as the time increment is smaller than a limiting
value based on the finite-element mass matrix and the DAA-boundary stiffness matrix.
Computational results produced by the boundary are compared with exact results for
linear canonical problems pertaining to infinite-cylindrical and spherical shells. :
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SECTION 1

-

)

INTRODUCTION

Salxl

P
R,

.‘S,r.
A 4 A

o 4

The primary objective of this effort has been the implementation of a non-reflecting bound- -
ary for use with existing finite-element codes to perform nonlinear ground-shock analyses of

X
"~ buried structures. This boundary is based on the first-order doubly asymptotic approzima-
:,.-' tion (DAA, ) for elastodynamic scattering [Geers and Yen (1981), Underwood and Geers 3

‘~.H (1981)'. In addition, a staggered solution procedure is utilized to partition the global equa-

LA tions in order to achieve both computational efficiency and software modularity {Felippa

! and Park (1980)..

v This work extends that of Underwood and Geers (1981) for linear ground-shock problems,

- wherein the DAA surface is placed on the surface of the buried structure. Here, the g
| : DAA surface is moved some distance out from the surface of the structure, enclosing both h
; ::j the structure and a portion of the surrounding soil medium. which may be treated with
4 ' nonlinear finite elemants. Other extensions include formulation and implementation for
K - general 2-D and 3-D problems, improved discretization of the DAA surface with higher- .
::-_'_: order interpolation functions, and utilization of a conditionally stable staggered-solution .
RS procedure.

1.1 Doubly Asymptotic vs. Singly Asymptotic Approximations

It is important to differentiate between doubly asymptotic approximations. which address

oy quasi-static and wave-propagation effects simultaneously, and singly asymptotic approxi- :
":- mations, which address these effects separately [see, e.g., various papers in Kalinowski, ed. 1
-, (1981) and Datta. ed., (1982), and Cohen and Jennings (1983)] For example, representa- 3
4 tion of the external medium by an elastic foundation, which may be quite satisfactory at

o low frequencies. does not account, at higher frequencies, for energy dissipation through ;
‘:.': outward propagation of scattered waves. On the other hand, representation of the exter- ;
',ﬁ: nal medium by a viscous boundary. which may be quite satisfactory for wave-propagation .
e problems. does not provide elastic restoring forces in the static limit.

A response-averaging method originally proposed by Smith (1974) and extended by Cun-

’:::/' dall. et al. (1978) also fails in the static limit. For example. consider the response of a !
3 rigid structure surrounded by an infinite, linear-elastic medium to an internal. quasi-static
29 point force. A computational model for this problem might consist of the rigid structure 3
O surrounded by a portion of the medium enclosed by a non-reflecting boundary. If this ,
' boundary is that of Smith. the total response of the structure is the average of two re-

B0 sponses, one dependent on the stiffness of the bounded portion of medium enclosed by -
k? a rigid boundary. and the other associated with the structure and bounded portion of A
Aok medium floating freely in space. Unfortunately. the latter response grows indefinitely in g
W the static limit because the freelv floating svstem is not in static equilibrium. In contrast. 3’

doubly asymptotic approximations approach exactness in the static limit.




1.2  Outline of Remainder of Report

Section 2 of this report derives the first-order doubly asymptotic equations of motion for ]

A a buried structure excited by a transient incident wave. Section 3 deals with formation $
4 W of the medium stiffness matrix required for the low-frequency component of DAA,. The :
.‘.:: staggered-solution procedure and associated stability analysis are discussed in Section 4, Y
My which establishes the time-increment limitation of the conditionally stable algorithm. Sec- Y
! tion 5 describes the implementation of the formulation as computer software, and presents *
‘.."_: numerical results for two canonical problems, viz., excitation of an infinite-cylindrical a.ad X
"\_-" a spherical shell by a plane dilatational wave. Section 6 concludes the report with some .g
observations and recommendations for future work. 3
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" _ SECTION 2 b
) '
& GOVERNING EQUATIONS ‘:,
2 3
:{i This section presents the governing equations for the finite-element (FE) model of the struc- '
" ture along with a portion of the surrounding soil medium, and for the boundary-element )
! model (BE) of the non-reflecting DA A surface. These equations are then partitioned, and T

a staggered-solution procedure is introduced to solve for transient response. Throughout

“ X
"L o - NN !
A} the development, the dependence of excitation and response quantities on time is implicit. E
A ]
\ ‘
',h 2.1 Finite-Element/Boundary-Element Model
. Let x be the computational vector of displacement response in global coordinates for the 2
A FE model of the structure and portion of surrounding medium. The governing equations ',
ﬁ for the finite-element model are then [see, e.g., Zienkiewicz (1977)) o
o8 3
o Mix+Dx+~-Kx=1f +f; (2.1) iy
j- where M,, D, and K, are the mass, damping and stiffness matrices, respectively, for Y
:f. the FE model, f. is the computational vector of external medium forces imposed by the i
:;' DAA surface and f; is the vector of internal nonlinear forces: as usual. a dot denotes "
differentiation in time. Compatibility of forces and displacements at the DAA surface may :f
be expressed as ! Geers and Underwood (1981) B
p = -Gg 3
o o (2.2) Q
(] u = G X h
. +H
where g and u are the global force and displacement vectors. respectively. for the BE model '
o of the DA A surface and G is the force-transformation matrix from BE to FE coordinates. ;..
e ",
. Now the force vector g and displacement vector u may be decomposed into incident-wave :
_. and scattered-wave components as |9'
. g=8;" 8s > o =
[, (-.o)
. u=u;-ug ’
P> - |\
- 3
- where g, is the known force vector associated with a free-field incident wave and gy is &
o the unknown force vector associated with the wave scattered by the structure. It is worth #
noting that this dual decomposition does not require constitutive linearity of the medium
< q
v to be valid. for g¢ and us may each be viewed as merely the difference between two vectors, ~
:- one obtaining with the structure absent and the other obtaining with the structure present. .’;3
: ;‘:
4, 2.2 Doubly Asymptotic Approximation I
A w1
e A first-order DAA is used here to relate the scattered-force vector 2. and the scattered- ®
& displacement vector us Geers and Yen (1981) and Underwood and Geers (1981) . This N
XY "
" [N L%
i \: 3 -
+ \ N
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: . approximation-approaches exactness in both the high- and low-frequency limits, and effects

) a smooth transition between. The development of DAA, for a linear, isotropic external

3 medium proceeds as follows.

;\‘ At high frequencies, the geometrical vector of scattered-wave surface tractions for the DAA

surface corresponding to normal and tangential motions of that surface is given by

;.,. £5(p) = PmCrm i () (24

3

:’ where p denotes a point on the surface, p,, is the mass density of the medium, and C,, is

::: the diagonal sound-speed matrix corresponding to i, which is the geometrical vector of

R normal and tangential scattered-wave velocities. For the component of u; normal to the
DAA surface. the corresponding matrix component is the dilatational velocity, while for

S each component of #'s tangential to the DAA surface, the corresponding matrix component

1s the shear velocity.

o Now the local-coordinate vectors of (2.4) may be transformed into global-coordinate vectors

N as

&

5 us(p) = Q) us(p).  tslp) = Q(p) ts(p) (2.3)

':. to obtain. inasmuch as Q! = @Q!. where the superscripts —1 and ¢ denote inverse and

b £, transpose. respectively.

ts(p) = Q'(p) PmCim Q(p) s (p) (2.6)

i L] . .

- Hence boundary-element discretization of us as isee, e.g., Zienkiewicz (1977)

v us(p) = N(p)us (2.7)

o

where N(p) is a matrix of shape-functions and ugs is a vector of displacement degrees of
freedom. and definition of the high-frequency scattered-wave force vector as

M h t
5 gt = [N ts(p) ds (2.)
;:5. vield. for high-frequency motions.
Yol ho_ : >
o gs = Dnus (2.9)
. in which
08
"‘-
. D, = /N’Q’memQNdS (2.10)
e
Xn
- At low frequencies. the scattered-wave force computational vector is given by the quasi-
h> s static relation
\)
“3 )
* 4
)
S
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gs = Knus (2.11)

where K,, is a full, nonsymmetric stiffness matrix for the boundary-element mesh, whose
construction is described in the next section.

Finally, the first-order doubly asymptotic approximation DAA, is formed by the superpo-
sition of g_‘q and g;l to obtain

gs = Dmﬁg he Km'lls (212)

Now the assumption embodied in DAA, of a constitutively linear medium for the scattered
wave is justified within the framework of classical plasticity theory if the material point
for every exterior location, i.e., every location in the medium outside the DAA surface,
remains within its corresponding yield surface when and after the scattered wave arrives
at the DA A surface. For incident waves with sufficiently rapid decay rates and for a DAA
surface sufficiently removed from the surface of the structure, the scattered wave causes
minor perturbations about an elastic state at each exterior location, thereby satisfying the
preceding condition.

The assumption of material isotropy outside the DAA surface cannot be rigorously main-
tained if the material has suffered plastic excursions in response to the incident wave.
However. it is likely that the resulting anisotropy is no more pronounced than that char-
acterizing the ambient state. which is generally uncertain in practical cases. Hence, while
an extension to material orthotropy may be theoretically possible, it may not be worth
the trouble.

2.3 Response Equations

Introduction of the first of (2.2) and (2.3) into (2.1) and of the second of (2.2) and (2.3)
into (2.12) yields the doubly asymptotic equations of motion

M,x~D.x-K.x= -G{g; - g5} ~ f,
(2.13)
g = Dm{GT)'( -u;} - Km{GTX - uy}

which may be numerically integrated in time to obtain the solution vectors x and gy.
Because M., D, and K. are typically large and banded. while K, is relatively small and
full. it is not computationally practical to introduce the second of these equations into the
first to eliminate gg.

However. because D,, is banded and multiplies the highest-derivative terms in the second
of (2.13). it is advantageous to apply the technique of augmentation Park. et al. (1977) .
which here merelv involves introducing the second of (2.13) into the first. moving the term
containing D,, to the left side of the resulting set of equations. and keeping G K,,,G'x on
the right. This yields the augmented doubly asymptotic equations of motion
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SECTION 3

MEDIUM STIFFNESS MATRIX

This section describes the construction of the boundary-element stiffness matrix that re-
gl lates the scattered-wave force and displacement vectors at low frequencies. The develop-
" ment is based on Somigliana’s identities, which derive from Betti’s reciprocal work theo-
rems and Kelvin's problem of a point load in an infinite elastic medium [see, e.g., Kupradze
(1965), Rizzo (1967), Cruse (1969), Lachat and Watson (1976)|

3.1 Elastostatic Boundary-Integral Equations

The surface behavior of an elastic medium, whether occupying an exterior or interior
region, may be expressed as {Rizzo (1967), Cruse (1969))

s ‘
> c(pulp) + [ T(r.auta)dr, = [ Uip.ala) dr, (3.1) ;
- v
'_:-:: where p is a point on the boundary and q is the integration variable, and where u(p) and :j

f‘ t(p) are d x 1 vectors (d = 2 or 3) of medium displacements and tractions in Cartesian !

j .~}; coordinates on the boundary at p. The elements T};(p, ¢) and U;;(p, q) of the d ~ d matrices ¢

T(p,q) and U{p, g) are fundamental solutions for the tractions and displacements at a '

o location ¢ in the direction ¢ due to a point load at location p in direction j. With é,; as

_-; the Kronecker symbol, each element of the matrix ¢ is defined as

cii(p) = 16, (3.2) ]

A if there exists a continuous tangent at p. or. with I', as the surface of a sphere of radius ¢ g
t{. centered at p,

}; )
1 )

v c.j(p) = (]131) ] T,,(p.q) dI', (3.3) :

r

v" A

if the tangent is not continuous. A simple method for the evaluation of ¢,, is given in

I

AL

Appendix A. by

Now an element of the two-dimensional displacement-kernel matrix U (p. ¢) for plane-strain 3
probleins is given by

=
- ”
o @y,

"-
A

»t oo y _ - I )

::E:'_J' Li]'(p,q) = m I»(3 — 41/)171(7')6,] —Ta Ty (3.4)

o

Bt where ¢, and v are the shear modulus and Poisson’s ratio.respectively. and r — r(p.q) 1s )

the distance between the load point p and the field point ¢: the derivatives are taken with
reference to the coordinates of ¢. With p, and ¢, as the coordinates of p and q. respectively.
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r,= 2P
T

In contrast, an element of the three-dimensional displacement-kernel matrix U (p, g) is given
by
1 . .

:——‘—-—!3—4 61"?‘ ’ q" 3.6
er(l )G 0 Wby (3.6)

Ul 7 (P, q)
Finally, an element of the traction-kernel matrix T'(p, q) for both two- and three-dimensional
problems is given by

-1 i _
Ti5(p.q) e {l(1 = 2v)6;5 + Broi 75 iring — (1 = 20)(rumj —ryyny)} (3.7)

- 4am(l -

where ..; and n, are direction-cosines for the surface normal at g. The two- and three-
dimensional forms are explicitly obtained by letting @ = 1, 2 and 8 = 2, 3, respectively.

3.2 Discretization

Numerical solution of the integral equation (3.1) requires discretization of the DA A surface.
over each boundary element of which the displacement and traction vectors are approxi-
mated. The curved isoparametric elements of finite-element theory offer both the generality
and the accuracy needed for this purpose. With this approach. the global Cartesian coor-
dinates of any point in an element are taken as related to the nodal coordinates by e¢.f.
(2.7)

z(p) = N(p) x (3.8)

1.e.. the same shape functions are used to approximate element geometry. displacements
and tractions. This allows interpolated displacements and tractions along the DAA curve

"-;:1: in two-dimensional space to be integrated over a normalized length in ¢-coordinate space.
:.‘3' and similar quantities over the DA A surface in three-dimensional space to be integrated
'.?_(.:;' over a standard 2 » 2 normalized square in £,. $:-coordinate space.

he :

@4 On an element-by-element basis, (3.8) becomes

[,/ -’ "
< e(ee - € €
N (&) = Y Ni(€) x; (3.9)
"3 *

e . . . N . e
e where r°(£%) is the d - 1 vector of Cartesian coordinates of a point in element e. the N (£°)
= are the element shape functions. and x} is the d - 1 vector of Cartesian coordinates of the

e kth element node: also. £ = £ in 2-D. but £ = £7.¢; in 3-D. The elements used in this
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study are the three-noded, quadratic, curved element for 2-D analysis and the eight-noded,
quadratic, serendipity element for 3-D analysis. The shape functions for the three-noded
quadratic element are

Ny=3€(€-1)
No=1-¢% (3.10)
Nz = 3€(6+1)

where £ € |-1,1}; the nodes are located at £ = -1,0,1. The shape functions for the eight-
noded quadratnc element are

Ny=-2(1-&)(1 - &)1+ &+ &)

Ny =1(1-¢€5(1- &)
N3 = %(1 + el)(l - &)(6 - &2~ 1)
Ny = 3(1 1- &3
Ns=3(1+ &)1+ &) &6+ €& -1)
Ne = 3(1-€)(1+ &)
Ni=3(1-&)1+ &) (-6~ &2 - 1)
Ng = 3(1-&)(1 - &)
where &; € i-1,1' and &; € {-1,1], and all nodes lie at the intersections of the ¢; = -1.0.1
and the £2 = -1,0.1 lines, except at 0,0, where there is no node.
3.3 Matrix Assembly
With DA A-surface coordinates. displacements and tractions approximated as
z(p) = N(p)x  u(p) = N(pju t(p) = N(p)t (3.12)
(3.1) may be expressed at a node P as
E
(PP - 3" [ T(Pg &) N Nu(€)ug Jiede
=2 r IS
- (5.13)
E ~
=N [ UPg &) Y N €t J(E)dE

r k

where E is the total number of elements on the DAA surface and J(£°) is the Jacobian
for x¢ ~ £ transformation: also. d¢* = d¢° in 2-D. but d¢ = d<§d<5 in 3-D. Finally.
coalescence of element contributions at common nodes is implicit in (3.13). The numerical
techniques used to evaluate the integrals in this equation are discussed in Appendix A.

Evaluation of (3.13) at every node on the DA A surface vields a set of simultaneous algebraic
equations that can be expressed in the form

o 3
et
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G
Au=Bt (3.14) ~3
so that f:'
t=B 'Au (3.15) g,
Now the nodal force vector g corresponding to a traction distribution t on the DA A surface &
is given by “
= [ NG)t(p)ar (3.16) :
r

Introduction of the third of (3.12) and of (3.15) into this relation then yields ..
.'rh
g=K,u (3.17) o
Lgl:
where the generally non-symmetric medium stiffness matrix K,, is given by ‘
[ t : 1 N

= 'L/ N'Ndl' B"'A (3.18) N
r b4
. 3
A symmetric form may be obtained as o4
T

K, =3K,-K,) (3.19)
-

which is identical to that derived from energy considerations | Zienkiewicz. Kelly and Bet1-
ess (1977)!. As indicated in Appendix B. however. the use of K, generally vields numerical v
results inferior to those produced by K,, ‘; '
w,
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NN STAGGERED SOLUTION PROCEDURE
i _‘-i
‘.:-1'::'
:\ In the interest of computational efficiency, the augmented doubly asymptotic equations
e of motion given by (2.14) are solved with a staggered solution procedure. The procedure
. is conditionally stable, requiring that the time increment be smaller than the shortest
R -{';‘ medium-boundary period divided by n. This shortest period may be obtained by determin-
::-I:::. ing the highest natural frequency for the eigenproblem
::it' 2 t

i w‘M:x=GK,,G'x (4.1)
ol In cases where the surrounding soil does not appreciably stiffen the embedded structure be-
AE

vond its inherent level, the highest medium-boundary frequency is substantially lower than
the highest natural frequency characterizing the structure itself. thereby allowing the ana-
lyst to carry out stable calculations with a relatively large time increment. The remainder
of this section describes the staggered-solution procedure and the stability analysis that

=

A

R el

R
& o leads to (4.1).

)

A

~ 4.1 Solution Algorithm
¥

L . .
h C~ To construct the staggered solution procedure for (2.14). those equations are expressed at

mid-step as

1N _‘\.'
‘i
::::: Mixpr12-Drxpiyo ~Kexpor 2o =fao12~ KpmXnoan (4‘2)
LT
i
‘T where the time step n = ¢/ At. in which ¢t and At are time and fized time increment. re-

J spectively, and where the total damping matriz D 1. the medium-boundary stiffness matriz
K s, and the total force vector f are given by

o~
N

./-""J DTZDS-‘»GDmGt

v

ﬁ Kum = GK,,G! (4.3)
"y f:—Gg,*GDmﬁ,~GKmu1»f1
* L]
LAY . . . - . . ..
\."'c-.' The integration algorithm utilized is the trapezoidal rule see. e.g.. Henrici (1962) . for
o p g

. .
P which
A0 :
Oe Xpn-12= (Xn.1:2 - Xn)'6
Knor2 = (Xney 2 Xn) 0
< (4.4)
~Tad Xn-1 = 2Xp_) 2~ Xp
.— ...
A . o .
,-"‘» Xpn-1 7 .ZX,,-] 2 Xp
o a“'{
oy where ¢ - At 2. Introduction of the first and then the last of these into the third vields
LA the standard form
N
AN 11
T
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)
! At . )
Xn+1 = Xn — —é_(xn-rl - xn) (45)

Now the first two of (4.4) are introduced into the left side of (4.2) and X, /2 on the right
side of (4.2) is predicted as x* to obtain the set of algebraic equations

b
[}

1/2
D =V
t
- sznd,l/z = €n41/2 _E’xft+l/2 (46)
Al
where
K ,
E,=M,.-6Dy~+ 6°K.
E, = 6Ky (4.7)
<y 2 ‘ . ‘
-:, €ni1/2 =4 fn¢1/2-Ms(xn +6xn)*6DTxn
L Finally, the prediction xf;ﬂ/2 is based on the one-term ezxtrapolation
Fi |
P _
- Xnr1/2 = Xn (4.8)
< The preceding staggered solution procedure leads to the following computational sequence
by to determine system response at time step n — 1:
¥
':_ (a) fn-*-l/'.! = (fn - n—‘~1)/2
0 ()  en.i1/2=0, 1,2~ My(xn + 6Xp) — §Drxy
-_.: (C) xfl*l,’z = Xp
A ! L .
' (d) Xno1.2 = E; e, 40— E; Xniy12
N
. (e) Xn-1 = 2Xpni1/2 — Xn
S .0
y . (f) Xpo1/2 = (Xno1/2 - Xn)/b
- - _.1 . O
. (9) Xnoyj2=M; (foiro-Drx, 1y - Krxn.2)
_“ (h) 5‘n+1/2=5‘n‘-"55'<n+1'2
X (1) Xn-1 = 2Xp.y 2 — Xn
j«' where the total stiffness matrir K+ = K. - K. To improve accuracy. an iterative loop
X has been introduced at (d). wherein x";‘l/z on the right is corrected to the previously
4 calculated value of X, ,,2: two iterations generally produce satisfactory convergence. The
calculation starts at n = 0 with x, = x,, = 0.

N 4.2 Stability Analysis

Park (1980) has performed a stability analysis of a generalized form of the staggered
solution procedure just described. The result is that the procedure is computationally
stable if no root of the characteristic equation
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det | 23 (M, - 6°Kypg) ~ 26Dp - 6Ky 0 (4.9

has a positive real part. Verification of this condition is relatively straighiforward when all
of the matrices in (4.9) are symmetric; it is generally quite difficult when one or more is not.
Unfortunately, as discussed in Section 3, the medium stiffness matrix K, is nonsvmrnetric.
which pollutes K, and K. Fortunately, however. K,, constitutes a small perturbation
of K, which is symmetric: hence it is appropriate to consider the characteristic equation

det ] z3(M. - 6°Kay) - z6Dr - 6Ky =0 (4.10)

where KM = GK,,G' and KT =K.-Ku.

As discussed on page 255 of Bellman (1970). no root of (4.10) has a positive real part if
(M; — 62KM). Dt and KT are all non-negative definite and either (M, — 62KM) or Kr
is positive definite. On physical grounds. D7 and K1 are both non-negative definite. but
generally not positive definite. However, inasmuch as M, 1s positive definite, (M, —62KM)
is positive definite if § is sufficiently small. The degree of smallness defines the stability
requirement, as discussed next.

Consider the following first eigenproblem:

Qx = Ax (4.11)

where Q = M;‘KM. This problem yields non-negative real eigenvalues and real eigen-
vectors. These eigenvectors may be assembled into a modal transformation matrix ¥ that

. . - - s~ d . . . .
diagonalizes Q as ¥'QW¥ = Q and normalizes as W'W¥ = I, the identity matrix. Hence
the introduction into {4.11) of a transformation from physical to generalized coordinates
as x = Wy and subsequent premultiplication through by ¥’ yield the diagonal eigenvalue
matrix

Ao=Q° (4.12)

Consider next the following second ergenproblem:
Kuyx - AM x (4.13)

whose eigenvalues and eigenvectors are the same as those of the first eigenproblem. Hence
the transformation from physical to generalized coordinates and premultiplication through
by ¥' yields

- d
Axiv = (Mf)_]Kt\,j (4]4)

; ‘ ~ .
where M° W'M. W and Ky, - WK, ®: Ay v is. of course. identical to Ao

Finally. consider the following third eigenprobiem:
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(M, - 62Kp)x = AX (4.15)

Transformation and premultication through as before yields

An_x = M? - 67K},
= M41 - 62 (M%) 'K},
=MIT - 6% Ak u!
= M{T-6%Aq

(4.16)

Hence the eigenvalues of (M, — 62K ;) are all positive, and thus (M, — 62K ) is positive
,maz)Q_

definite, if 6 times the largest eigenvalue AG®* is less than unity. With AZ®" = (wg
this vields the stability requirement

At < (4.17)

maz
w
Q

which is stated in slightly different terms at the beginning of this section.

Establishment of the stability requirement (4.17) for a symmetric medium stiffness matrix
facilitates the estimation of a similar requirement for a non-symmetric one. Clearly. no root
of (4.9) has a positive real part if 6 is vanishingly small, as M, is symmetric and positive
definite, and D7 is symmetric and non-negative definite. Also. on physical grounds. the
eigenvalues of (M,) 'K, must be real and non-negative. Finally, the eigenvalues for the
three eigenproblems above differ only slightly from their counterparts when Ky is replaced
by K as because. as illustrated in Appendix B, K, constitutes a small perturbation of K ,,,.
Hence. as é is increased from zero, all the roots of (4.9) contain negative real parts until
the stability requirement (4.17) is approached. where wG®* now pertains to the use of K.
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SECTION 5

IMPLEMENTATION AND COMPUTATION

This section describes the techniques used to implement in software the approach delin-
eated above, and presents numerical results generated by that software. Modern software-
engineering techniques are used |Felippa (1981)!. in order to facilitate extension to large-
scale production analysis. The numerical results pertain to canonical problems involving
plane. dilatational step-waves that envelop infinite-cylindrical and spherical shells (Figure
1). These problems possess known analytical solutions.

5.1 Software Implementation

The approach described in Sections 2, 3 and 4 is embodied in an assembly of of four
software entities:

1. Structural Matriz Generator: The structural mass and stiffness matrices. M. and K.
in (2.14), are generated by the finite-element code DIAL |Ferguson and Cyr (1984):
D, is neglected. The structural matrices and related data are read into a NICE global
database |Felippa (1982)].
Medium Matriz Generator: The medium damping and stiffness matrices, D,, and
K,. in (2.14), are generated by software developed as part of this studv in the manner
described above: the force-transformation matrix G is constructed as a correspondence
table. These data are read into the NICE global database.

Incident Field Generator: The incident-wave displacement, velocity and force vectors.
u;. u; and g; in (2.14), are also generated by software developed as part of this
study in the manner described below: as these are time-dependent vectors. they are
calculated dynamically as the calculation proceeds. f; is taken as zero.

Staggered Solution Procedure: The solution algorithm described in Subsection 4.1 is
implemented as a NICE procedure using a command language interpreter 'Felippa
(1983).. The matrix operations embedded in the algorithm are performed with a
matrix utility processor for data in unblocked skyline format | Felippa (1978)..

The FE and BE models are constructed independently. although the element grids match
at the boundary. Geometrical symmetry is exploited in both canonical problems.
5.2 Incident-Wave Vectors

A plane. dilational step-wave characterized by a velocity jump V., and propagating in the
1,-direction may be described in terms of a scalar potential as

V. )
4,1:_2_6; (cat — ) - a)® H(cat — z, — a) (5.1)

where ¢4 is the dilatational speed in the elastic medium. H is the Heaviside operator. and
—a is the point on the r;-axis where the wave front is located at t = 0. The applica-
tion of classical continuum formulas Achenbach {1973) vields for the components ot the
geometrical displacement and velocity vectors for the incident wave
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;= 01, -z - - -a
1 y Cd 11— a Cd I, (5.2)

l'ti = 6],Vo H(Cdt -~ I — a)

AR

Hence the elements of the computational vectors u; and u; are given by (6.2) evaluated
at the surface nodes.

Similarly, the components of the incident-wave stress tensor and geometrical surface-
traction vector are given by |{Achenbach (1973)|

ol = —5,, . “(A +2uéy;) H(cqt — 2, - a) (5.3)

I _ ..
t; = oqn,

where A and u are the Lamé constants and the n, are the direction-cosines for the surface
normal. Hence the computational vector g, is given by (3.16).

5.3 Infinite Cylindrical Shell

The first canonical problem is that of an infinite cylindrical shell embedded in an elastic
medium and excited by a transverse. plane, dilatational wave Garnet and Crouzet-Pascal
(1966)!. The parameter ratios for this problem are E.'E,, = 2.5 (Young's modulus).
h/a = 0.01 (shell thickness-to-radius), p,/p,, = 1.156 (mass density). v, = 0.25 and
v, = 0.2 (Poisson’s): these pertain to a concrete shell in slow granite. The duration of the
rectangular incident-wave pulse is ¢4t /a = 10. A curved. three-noded shell element is used
to model the shell. so that the FE/BE discretization employs conforming elements.

The first computational model for this problem places the DAA boundary directly on the
shell in the manner of Underwood and Geers (1981). The use of six curved quadratic ele-
ments over the half-model yields results that are virtually identical to those of Underwood
and Geers (1981). which were generated with twenty linear elements over the half-model.
Figure 2 shows DAA and exact displacement-response histories: agreement is seen to be
excellent.

The second computational model introduces eight-noded medium finite elements between
the shell and the DA A boundary. which is located one shell radius out from the shell surface
(Figure 3). The displacement-response histories thus produced are shown in Figure 1 as
solid lines. along with their DAA counterparts from Figure 3. which are shown as dashed
lines. It is seen that the use of medium finite elements degrades solution accuracy somewhat
by introducing spurious oscillations caused by ringing of the mesh. A third computational
model. which locates the DAA boundary three shell radii out from the shell surface. vields
results that are even more oscillatory. although peak-response values are still satisfactory.

5.4 Spherical Shell

The second canonical problem is that of a spherical shell embedded in an elastic medium
and excited by a plane dilatational wave Grafton and Fox (1965). Geers and Yen (1981) .
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The parameter ratios for this problem are the same as those for the infinite cylindrical
shell, and the duration of the rectangular incident-wave pulse is also ¢4t '/a = 10. An eight- 2
noded Ahmad shell element is nsed to model the shell. so that this FE/BE discretization
also employs conforming elements.

f
As previously, the first computational model for this problem places the DAA boundary '
directly on the shell: six eight-noded quadratic elements are used over the quarter-model of ol
. the shell (Figure 5). DAA-based displacement-response histories are compared with their 0
.- exact counterparts in Figure 6, the latter having been generated in the manner of Geers A
w and Yen (1981). Here too, agreement is seen to be excellent. Y
o h
‘ The second computational model introduces twenty-noded medium finite elements between :.‘
the shell and the DA A boundary, which is located one shell radius out from the shell surface
. (Figure 7). The displacement-response histories thus produced are shown in Figure 8 as (=
N solid lines, along with their DAA counterparts from Figure 6, which are shown as dashed ﬁ_ y
N lines. Here too, it is seen that the use of medium finite elements degrades solution accuracy ;: »
o by introducing spurious oscillations caused by ringing of the mesh. -
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SECTION 6

CONCLUSION

This report has documented the formulation and implementation of a non-reflecting bound-
ary for use with existing finite-element codes to perform nonlinear ground-shock analyses
of buried structures. The boundary is based on a first-order doubly asymptotic approxi-
mation (DAA,) for disturbances propagating outward from a selected portion of the soil
medium surrounding the structure of interest. The resulting set of first-order ordinary
differential equations is then combined with the second-order equations of motion for the
finite-element model so as to facilitate solution by a staggered solution procedure. This
procedure is shown to be computationally stable as long as the time increment is smaller
than a limiting value based on the finite-element mass matrix and the DA A-boundary stiff-
ness matrix. Computational results produced by the boundary are compared with exact
results for linear canonical problems pertaining to infinite-cylindrical and spherical shells.

6.1 Observations
It is appropriate here to offer some comments regarding the work described above:

1. As pointed out in the Introduction. doubly asymptotic approximations are clearly
superior to singly asymptotic approximations. the former incorporating both radiative
energy dissipation and elastic restoring forces. the latter accounting for only one or
the other.

2.  While the medium damping matrix may be interpreted in terms of local dashpots
positioned on the DA A surface, the medium stiffness matrix is not so easily regarded:
attempts to simplify the fully coupled nature of K,, merely degrade the validity of
the low-frequency approximation.

3. Although it is tempting to use a symmetric medium stiffness matrix in DAA compu-
tations, the resulting loss of accuracy constitutes too high a price.

4. The computational stability requirement (4.17) is a generous one when the soil is
substantially softer than the structural material; when this is not the case. however.
more efficient computations might be realized with an unconditionally stable staggered
solution procedure. which is vet to be developed.

5. The use of modern software-engineering techniques. as embodied in the NICE In-
tegrated Software System, greatly facilitates the implementation of methods for the
analysis of coupled systems.

6. The results for the linear canonical problems once again demonstrate the difficulty of

propagating a discontinuous wave front through a finite-element grid and. in contrast.

the good performance of a boundarv-element grid located directly on the surface of
the structure.

6.2 Future Work

Future R&D work in this area could profitably pursue the following paths:

1&




) X 1. The usefulness of the non-reflecting DAA; boundary in nonlinear problems should be

N more stringently assessed by applying it to nonlinear canonical problems; the challenge

she here is to find “exact” solutions for such problems against which to compare the

Y approximate solutions.

e 2. A non-reflecting DAA boundary should be developed for a medium half-space, this

S0 for application in near-surface ground-shock analyses.

3. An unconditionally stable staggered solution procedure should be formulated for prob-

o lems not amenable to the conditionally stable procedure.

4. A new approach should be sought for satisfactorily propagating discontinuous wave
fronts through finite-element grids: failing this. the option. in nonlinear response prob- .

: lems. of placing the DAA grid directly on the surface of the structure | Underwood 3

and Geers (1980) should be revisited.
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APPENDIX A

4,

NUMERICAL INTEGRATION TECHNIQUES :

* .
% :
N {
::.-f Discretization of the DAA boundary makes it possible to approximate (3.1) by a system of
A , linear algebraic equations for nodal values of surface displacement and traction, i.e., (3.14). X
]

The coefficients in these equations are obtained by integrating, by means of quadrature
formulas, products of kernel functions and shape functions over the boundary elements, as
indicated in (3.13). In this regard, it is necessary to distinguish between to fundamentally
different types of integrals that arise.

The first type of integral occurs when the node P does not belong to the element over
S which the integral is being performed. This type is regular. because the integrand varies
. smoothly over the surface. Simple Gaussian quadrature formulas may then be used. In \
two dimensions,

o
Ky +1 M h
: ds= > w f(&) (A.1)
'sq_"- -1 =1
A
e where the w) are weighting factors. the & are the coordinates of the integration points and !
::::3 M is the total number of integration points. Similarly, in three dimensions. ] X
19y ;
. <1 +1 M M
i~ / f(€1, &) dErdEa = Y Y wiwm f(E11- E2m) (4.2)
=~ ~1 J-1 I=1 m=)
S0
e The second type of integral occurs when the node P belongs to the element over which the
4.7 . . . . . . . .
D) integral is being performed. This type is singular. because the integrand grows without
oy bound at P. The techniques used to evaluate the singular integrals encountered in this .
o study are described below. \
\':' \
‘..- . . . '
~ A.1 Singular Integrals Involving the Traction Kernel y
"o by
(" For this singular case. there exists no quadrature formula suitable for the calculation of
AN the integral T,,. The coefficient of this integral for the singular node together with the ¢, k
::::: term form the leading diagonal submatrix of coefticients of u, in equation (3.13). These
A coefficients can be expediently calculated by noting that a stress field corresponding to a
"’- rigid body translation of the body is zero. In this case equation (3.14) becomes
. :
I\J A U = 0 (‘4.3) g
Al {
o where u is a vector of unit rigid body displacements. The diagonal terms of A are simply X
‘ - given by . ,
9 a, =1 Y a, (A4) |
¢ il '
P ,
) |
L !
o
o 31
D&,
3
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A.2 Singular Integrals Involving the Displacement Kernel

In two dimensions. a quadrature rule based on the theory of | Takahasi and Mori (1973).
is utilized integrate the In(r) singularity contained in the U;; kernel. Such a quadrature
rule has been successfully used for two-dimensional acoustic scattering problems |Burton
1976). First, let the integration of this singularity in the intrinsic coordinate system be
represented by

1=/_]f(£)d§ (4.5)

where f(&) may have singularities at =1. Then the value of this integral is given by the

following quadrature formula
N

I~ Y wef(s) (4.6)

n=-N

_ 2h —n2hR?

= —=¢€

VT
= erf(nh)

The values of N = 4 and h = 0.75 were used to construct a 9-point. one-dimensional
quadrature rule. The error in integrating In(¢) over (0,1) with these points is less than
6 x 107°, The method has been shown to be capable to handle singularities of composite
or undetermined types | Burton 1976.. When the singularity is at the center node of the 3
noded quadratic element, the element is subdivided such that the quadrature rule can be
applied on either side of the node.

In three dimensions a technique given by |Lachat & Watson 1976- was used to integrate
the 1,7 singularity in U;;. The 2 x 2 basis square in £;.S» -space on which the non-singular
integrals are evaluated is subdivided into triangles. the singular nodes always at the vertex.
The triangles are given a new intrinsic coordinate system (n,.72) obtained by viewing the
triangle as a degenerated rectangle in the {£;.£2) space. The relationship between the two
sets of intrinsic coordinates is given in terms of linear shape functions defined by

4

Gln) =Y N'(meg" (A4.7)

a=1

where N2(n) represent the linear shape functions. These triangular subelements in the
(n1.7m2) space form a Jacobian that has 0(r) behaviour. The 0(1 r) singularity of the kernel
is removed numerically when multiplied by this Jacobian with 0(r) behaviour.
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A.3 Geometrical Symmetry

A Symmetry of the DAA boundary with respect to coordinate axes is accounted for within the
\ software. This is implemented by reflecting each element about the symmetry axis during
pa the construction of the A and B matrices (equation 3.14). Care however, is required,when
:‘-':: using the rigid body methodology to caicilate the diagonal terms of the traction kernel T;,.
;‘f in that the summation of the off-diagonal terms must be performed before the symmetry
transformation is applied to each component of T,,. Also. the displacements and tractions
at the nodes on the plane of symmetry in the direction across the plane must be eliminated
I because they are zero. This is done by zeroing the corresponding rows and columns and
o by placing the value 1.0 on the leading diagonal.
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Rt APPENDIX B

SYMMETRIC AND NONSYMMETRIC
MEDIUM STIFFNESS MATRICES

The accuracy of symmetric and nonsymmetric medium stiffness matrices is evaluated here
" ) by computing the nodal forces generated by a uniform displacement field applied to a spher-
25 ical cavity in an infinite elastic medium. The correct nodal forces follow from the known
R traction solution 'Timoshenko and Goodier 1951 and (3.16). the nodal forces produced by
\ "':. the nonsymmetric stiffness matrix follow from (3.17). and the nodal forces produced by the
b0 symmetric stiffness matrix follow from (3.17) with K,, replaced by Km. Figure 9 shows,

for the discretization of Figure 5. computational error in nodal-force magnitudes computed
DA with the svmmetric and nonsymmetric matrices: K,, clearly outperforms Km. It should
e be noted. that convergence of the nodal forces generated by the symmetric medium matrix
SN K, was obtained by successive mesh refinement.
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U S ARMY BALLISTIC RESEARCH LAB
ATTN: SLCBR-SS-T (TECH LIB)
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U S ARMY CONCEPTS ANALYSIS AGENCY
ATTN: CSSA-ADL (TECH LIB)

U S ARMY CORPS OF ENGINEERS
ATTN: DAEN-ECE-T
ATTN: DAEN-RDL

U S ARMY ENGINEER CTR & FT BELVOIR
ATTN: DT-LRC

U S ARMY ENGINEER DIV HUNTSVILLE
ATTN: HNDED-SR

U S ARMY ENGINEER DIV OHIO RIVER
ATTN: ORDAS-L (TECH LIB)

U S ARMY ENGR WATERWAYS EXPER STATION
ATTN: J STRANGE
ATTN: J ZELASKO
ATTN: LIBRARY
2CYS ATTN: WESSD J JACKSON
ATTN: WESSE

U S ARMY MATERIAL COMMAND
ATTN: DRXAM-TL (TECH LIB)

U S ARMY MATERIAL TECHNOLOGY LABORATORY
ATTN: TECHNICAL LIBRARY

U S ARMY NUCLEAR & CHEMICAL AGENCY
- ATTN: LIBRARY

USA MISSILE COMMAND
ATTN: DOCUMENTS SECTION

DEPARTMENT OF THE NAVY

LEAHY (CG 16)
ATTN: WEAPONS OFFICER

NAVAL FACILITIES ENGINEERING COMMAND
ATTN: CODE 04B

NAVAL POSTGRADUATE SCHOOL
ATTN: CODE 1424 LIBRARY

NAVAL RESEARCH LABORATORY
ATTN: CODE 2627 (TECH LIB)

NAVAL SURFACE WEAPONS CENTER
ATTN: CODE F31

NAVAL SURFACE WEAPONS CENTER
ATTN: TECH LIBRARY & INFO SVCS BR

NAVAL UNDERWATER SYSTEMS CTR
ATTN: CODE EM J KALINOWSKI
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DEPARTMENT OF THE NAVY (CONTINUED)

NAVAL WAR COLLEGE
ATTN: CODE E-11 (TECH SERVICE)

NAVAL WEAPONS EVALUATION FACILITY
ATTN: CLASSIFIED LIBRARY

OFC OF THE DEPUTY CHIEF OF NAVAL OPS
ATTN: NOP 03EG
ATTN: NOP 981

OFFICE OF NAVAL RESEARCH
ATTN: CODE 474 N PERRONE

SPACE & NAVAL WARFARE SYSTEMS CMD
ATTN: PME 117-21

STRATEGIC SYSTEMS PROGRAMS (PM-1)
ATTN: NSP-43 (TECH LIB)

DEPARTMENT OF THE AIR FORCE

AFIS/INT
ATTN: INT

AIR FORCE GEOPHYSICS LABORATORY
ATTN: LWH/H OSSING

AIR FORCE INSTITUTE OF TECHNOLOGY
ATTN: LIBRARY

AIR FORCE OFFICE OF SCIENTIFIC RSCH
ATTN: JALLEN
ATTN: W BEST

AIR FORCE SYSTEMS COMMAND
ATTN: DLW

AIR FORCE WEAPONS LABORATORY, AFSC
ATTN: NTE M PLAMONDON
ATTN: NTED J THOMAS
ATTN: NTED R HENNY
ATTN: SUL

AIR UNIVERSITY LIBRARY
ATTN: AUL-LSE

BALLISTIC MISSILE OFFICE/DAA
ATTN: EN
ATTN: MGEN A SCHENKER
ATTN: MGEN E FURBEE
ATTN: PP

DEPUTY CHIEF OF STAFF
ATTN: LEEE

DEPUTY CHIEF OF STAFF/AF-RDQI
ATTN: AF/RDQI

FOREIGN TECHNOLOGY DIVISION, AFSC
ATTN: NUS LIBRARY

ROME AIR DEVELOPMENT CENTER, AFSC
ATTN: TSLD

STRATEGIC AIR COMMAND
ATTN: INA

38

STRATEGIC AIR COMMAND
ATTN: NRI/STINFO

STRATEGIC AIR COMMAND
ATTN: XPFS

STRATEGIC AIR COMMAND
ATTN: XPQ

DEPARTMENT OF ENERGY

DEPARTMENT OF ENERGY
ALBUQUERQUE OPERATIONS OFFICE
ATTN: CTID
ATTN: R JONES

DEPARTMENT OfF ENERGY
NEVADA OPERATIONS OFFICE
ATTN: DOC CON FOR TECHNICAL LIBRARY

LAWRENCE LIVERMORE NATIONAL LAB
ATTN: L-221 D GLENN
ATTN: L-53 TECH INFO DEPT LIBRARY

LOS ALAMOS NATIONAL LABORATORY
ATTN: MS P364 REPORTS LIBRARY

OAK RIDGE NATIONAL LABORATORY
ATTN: CENTRAL RSCH LIBRARY
ATTN: CiViL DEF RES PROJ

SANDIA NATIONAL LABORATORIES

ATTN: LIBRARY & SECURITY CLASSIFICATION

otv

SANDIA NATIONAL LABORATORIES
ATTN: ORG 7111 L HILL
ATTN: ORG 7112 A CHABAI
ATTN: TECH LIB 3141

OTHER GOVERNMENT

CENTRAL INTELLIGENCE AGENCY
ATTN: OSWR/NED

DEPARTMENT OF THE INTERIOR
ATTN: TECH LIB

DEPARTMENT OF DEFENSE CONTRACTORS

AEROSPACE CORP
ATTN: LIBRARY ACQUISITION M1/199

APPLIED RESEARCH ASSOCIATES, INC
ATTN: N HIGGINS

APPLIED RESEARCH ASSOCIATES, INC
ATTN: S BLOUIN

APPLIED RESEARCH ASSOCIATES, INC
ATTN: D PIEPENBURG

APPLIED RESEARCH ASSOCIATES, INC
ATTN: R FRANK

AVCO SYSTEMS DIVISION
ATTN: LIBRARY A830

BDOM CORP
ATTN: AVITELLO
ATTN: CORPORATE LIB
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' " DEPT OF DEFENSE CONTRACTORS (CONTINUED)
s BOM CORP

e ATTN: F LEECH
LM
b BOEING CO
- ATTN: M/S 8K-22 D CHOATE
CALIFORNIA INSTITUTE OF TECHNOLOGY
ATTN: T AHRENS
S CALIFORNIA RESEARCH & TECHNOLOGY, INC
N ATTN: K KREYENHAGEN
0 ATTN: LIBRARY
e ATTN: M ROSENBLATT
Y ATTN: S SCHUSTER
3 CALIFORNIA RESEARCH & TECHNOLOGY, INC
‘ol ATTN: F SAUER

L
[ CALSPAN CORP
0 ATTN: LIBRARY

CARPENTER RESEARCH CORP
ATTN: HJ CARPENTER

UNIVERSITY OF DENVER
ATTN: J WISOTSKI

1T RESEARCH INSTITUTE
ATTN: DOCUMENTS LIBRARY
ATTN: M JOHNSON

B e ek

] -1‘
N INSTITUTE FOR DEFENSE ANALYSES
e ATTN: CLASSIFIED LIBRARY
g KAMAN SCIENCES CORP
Y ATTN: L MENTE
ATTN: LIBRARY
g KAMAN SCIENCES CORP
ATTN: LIBRARY
W
KAMAN TEMPO
o ATTN: DASIAC
) KAMAN TEMPO
o ATTN: DASIAC
. LOCKHEED MISSILES & SPACE CO, INC
2CYS ATTN: | MATHEWS
- ATTN: J BONIN
“r 2CYS ATTN: T GEERS
P LOCKHEED MISSILES & SPACE CO, INC
Y ATTN: J WEISNER
E:'.- MAXWELL LABORATORIES, INC
o ATTN: J MURPHY
%
"-‘; MCDONNELL DOUGLAS CORP
o ATTN: R HALPRIN
- MERRITT CASES, INC
- ATTN: J MERRITT
o ATTN: LIBRARY
S NEW MEXICO ENGINEERING RESEARCH INSTITUTE
o ATTN: N BAUM
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PACIFIC-SIERRA RESEARCH CORP
ATTN: H BRODE, CHAIRMAN SAGE

PATEL ENTERPRISES, INC
ATTN: M PATEL

R & D ASSOCIATES
ATTN: CKB LEE
ATTN: D SIMONS
ATTN: J LEWIS
ATTN: P HAAS
ATTN: TECHNICAL INFORMATION CENTER
ATTN: W WRIGHT

R & D ASSOCIATES
ATTN: G GANONG

RAND CORP
ATTN: P DAVIS

RAND CORP
ATTN: B BENNETT

S-CUBED
ATTN: D GRINE
ATTN: LIBRARY
ATTN: T RINEY-

SCIENCE APPLICATIONS INTL CORP
ATTN: TECHNICAL LIBRARY

SCIENCE APPLICATIONS INTL CORP
ATTN: D MAXWELL

SCIENCE APPLICATIONS INTL CORP
ATTN: W LAYSON

SOUTHWEST RESEARCH INSTITUTE
ATTN: A WENZEL

SRI INTERNATIONAL
ATTN: D KEOUGH

STRUCTURAL MECHANICS ASSOC, INC
ATTN: R KENNEDY

TELEDYNE BROWN ENGINEERING
ATTN: D ORMOND
ATTN: F LEOPARD

TERRA TEK, INC
ATTN: S GREEN

TRW ELECTRONICS & DEFENSE SECTOR
2CYS ATTN: N LIPNER
ATTN: PBHUTA

ATTN: TECHNICAL INFORMATION CENTER

TRW ELECTRONICS & DEFENSE SECTOR
ATTN: E WONG
ATTN: P DAl

WEIDLINGER ASSOC, CONSULTING ENGRG
ATTN: T DEEVY

WEIDLINGER ASSOC, CONSULTING ENGRG
ATTN: M BARON

WEIDLINGER ASSOC, CONSULTING ENGRG
ATTN: JISENBERG
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